Name (Print)	Department
, ,	•

Chemistry 685-Safety Seminar Hazardous Waste Disposal and Spill Control January 4, 2001

Circle the ONE Correct Answer For Each Question

Hazardous Waste

- 1) Laboratory conditions that allow chemical "unknowns" to be created include:
 - a. Improper storage methods
 - b. Students and supervisors not performing periodic inspections of chemicals
 - c. Students not labeling containers
 - d. All of the above
- 2) When is it appropriate to use chemical abbreviations and structures on the yellow Hazardous Waste tags found on the red safety solvent cans?
 - a. Never
 - b. When it is convenient
 - c. When adding the same solvent over and over again
 - d. Only for high molecular-weight compounds
- 3) Hazardous wastes are defined by the **EPA** as being either specifically "listed" or they exhibit a "characteristic" of being hazardous. Which of the items below are the correct hazardous "characteristics"?
 - a. Flammability, corrosivity, toxicity (heavy metals), and reactivity
 - b. Liquids, solids, and gases
 - c. Radioactive and Infectious
 - d. Anything that smells bad
- 4) Of the materials listed below, which waste materials are inappropriate for the red safety (solvent) cans?
 - a. Mercury
 - b. Silica Gel
 - c. Concentrated acids
 - d. All of the above

- 5) The main purpose of the flash arrestor in a safety can is:
 - a. To filter out solid materials
 - b. To neutralize acids as the liquid enters the can
 - c. To act as a "heat sink" and prevent the propagation of flame into the can
 - d. To balance the can to make it easier to pour
- 6) Glassware and broken glassware require special disposal procedures because:
 - a. Glassware can be contaminated with hazardous materials
 - b. Broken glass can be a puncture or cutting hazard
 - c. All of the above
- 7) "Sharps" that have not been in contact with human fluids can be disposed of by:
 - a. Throwing them into the regular trash
 - b. Placing them with glassware trash
 - c. Placing them in a rigid container and then placing them in the glass disposal boxes

Spill Control

- 8) The two primary methods of spill control include:
 - a. Funneling and channeling
 - b. Containment and evaporation
 - c. Adsorption and neutralization
 - d. Dilution and evaporation
- 9) For small, low hazard spills you should:
 - a. Be prepared to adsorb or neutralize the spill yourself
 - b. Call 911
 - c. Pour it down the drain
 - d. Let it evaporate up the fume hood
- 10) For larger, more hazardous spills you should:
 - Call the Safety Coordinator or Environmental Health and Safety (EHS)
 - b. Contain the spill if you can and warn others about the spill
 - c. Block the area to prevent people from entering the lab
 - d. All of the above
- 11) Once a spill is cleaned up, the spilled materials should be:
 - a. Put into an appropriate container and labeled
 - b. Left for the custodians to clean up
 - c. Thrown into the trash
 - Poured down the drain