Ted M. Clark

Education

Ph.D., Chemistry. University of Michigan, Ann Arbor, Michigan, 1997.

B.A., Chemistry, History, Religious Studies (triple major). University of Detroit, Detroit, Michigan, 1991. Graduated *Summa Cum Laude* (GPA 3.9/4.0)

Current Position

Associated Associate Professor. Department of Chemistry and Biochemistry, The Ohio State University (OSU), 2016-present.

Awards

Ohio PKAL, STEM Educator of the Year, 2017

Representative Professional Activities and Service

- ACS CERM 2020 Symposium organizer, chemical education.
- Biennial Conference on Chemical Education 2020 Session organizer.
- DivCHED-RMC. ACS Chemical education division, regional meeting committee representative, 2018-2020.
- Modeling Instruction workshop leader, PI and co-PI, 2007-2017.
- Associate Director for the Ohio Consortium for Undergraduate Research-Research Experiences to Enhance Learning (OCUR-REEL) program, 2007-2011.

Representative Publications

Clark, T. M., Callam, C. S., Paul, N. M., Stoltzfus, M. W., & Turner, D. (2020). Testing in the time of COVID-19: A sudden transition to unproctored online exams. *Journal of chemical education*, *97*(9), 3413-3417.

Trease, N. M., Clark, T. M., Grandinetti, P. J., Stebbins, J. F., & Sen, S. (2017). Bond length-bond angle correlation in densified silica—Results from ¹⁷O NMR spectroscopy. *The Journal of Chemical Physics*, *146*(18), 184505.

Clark, T. M., Ricciardo, R., & Weaver, T. (2016). Transitioning from expository laboratory experiments to course-based undergraduate research in general chemistry. *Journal of Chemical Education*, 93(1), 56-63.

Clark, T. M., & Chamberlain, J. M. (2014). Use of a PhET interactive simulation in general chemistry laboratory: Models of the hydrogen atom. *Journal of Chemical Education*, 91(8), 1198-1202.

Clark, T. M., Cervenec, J., & Mamais, J. (2011). "The Price is Right" for Your Classroom. *Journal of Chemical Education*, 88(4), 428-431.

Clark, T. M., Grandinetti, P. J., Florian, P., & Stebbins, J. F. (2004). Correlated structural distributions in silica glass. *Physical Review B*, 70(6), 064202.

Representative Chapters in Edited Books

Harper, K., Clark, T.M., & Ding, L. Destabilizing the Status Quo in STEM Professional Development with Modeling Instruction. *Research in Science Education (RISE) Volume 8, Physics Teaching and Learning: Challenging the Paradigm*, 2019.

Ted M. Clark, "Fostering Creativity in Undergraduate Chemistry Courses with In-Class Research Projects", pp. 113-134, in "Creativity and Innovation Among Science and Art." Charyton, editor. Springer-Verlag London, 2015. http://link.springer.com/chapter/10.1007%2F978-1-4471-6624-5 6

Ted Clark, Alexis Collier and John Ryan. "Assessment as a Strategy to Enhance 21st Century Chemistry Education" in Assessment of Chemistry. Assessment in the Disciplines, Volume 5, eds. Ryan, Clark, and Collier, 1-6 (Association for Institutional Research, 2010).

Ted Clark. "An Ambitious Statewide Transformation of Introductory Chemical Courses: Assessing the Ohio Consortium for Undergraduate Research- Research Experiences to Enhance Learning (OCUR-REEL) Project" in Assessment of Chemistry. Assessment in the Disciplines, Volume 5, eds. Ryan, Clark, and Collier, 7-26 (Association for Institutional Research, 2010).

Ted M. Clark and Philip J. Grandinetti, "The Structure of Oxide Glasses: Insights from ¹⁷O NMR". Modern Magnetic Resonance, ed. Graham A. Webb, 1543-1548 (Springer Press, 2006).

Book Co-Editor

Mark Blaser, Ted Clark, Liana Lamont, Jaclyn J. Stewart (Eds). *Active Learning in General Chemistry: Specific Interventions*. ACS Publications, Dec., 2019.

Mark Blaser, Ted Clark, Liana Lamont, Jaclyn J. Stewart (Eds). *Active Learning in General Chemistry: Whole-Class Solutions*. ACS Publications, Dec., 2019.

John Ryan, Ted Clark, and Alexis Collier. Assessment of Chemistry. Assessment in the Disciplines, Volume 5. Association for Institutional Research: Tallahassee, FL, 2010.

Current Funding

Principal Investigator. (2020) Identifying barriers to participation and engagement in synchronous and asynchronous learning environments in general chemistry. University Institute for Teaching and Learning (UITL) Research and Implementation Grant. \$7,000.

Co-Principal Investigator. (2019) Student Academic Achievement Research (SASR) Grant, Use and Evaluation of a Mastery-Based Computer Program in General Chemistry. \$26,000.

Principal Investigator. (2019) Improving Essential Skills Related to Solution Stoichiometry and Titrations in General Chemistry and Analytical Chemistry. University Institute for Teaching and Learning (UITL) Research and Implementation Grant. \$5,000.