Ohio State is in the process of revising websites and program materials to accurately reflect compliance with the law. While this work occurs, language referencing protected class status or other activities prohibited by Ohio Senate Bill 1 may still appear in some places. However, all programs and activities are being administered in compliance with federal and state law.

Dr. Tamar Stein - Theoretical Special Seminar

Tamar Stein
January 9, 2017
All Day
McPherson Laboratory 2015

Affiliation: University of California, Berkeley

Title: "From ionization of small acetylene clusters to the first aromatic ring: A different path for hydrocarbon growth"

The formation of benzene and its cation constitute a likely gateway to polycyclic aromatic hydrocarbons, which act as the bridge to larger carbonaceous material, such as soot, in combustion processes, and interstellar dust. In my talk, I will present results that address the long-standing puzzle of how ion-molecule reactions involving small unsaturated organics, such as acetylene (which is widespread in the interstellar medium), can lead to benzene cation. I will present new insights into the facile way in which C6H6+ products, including benzene cation, can be accessed after ionization of cold isolated neutral clusters, and show that there is a catalytic role for what are nominally spectator acetylene molecules. The results include ab-initio molecular dynamics (AIMD) simulations and molecular beam vacuum-ultraviolet (VUV) photoionization mass spectrometry experiments, and provide insights into the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). The products in the experiment change from reactive fragmentation products in a higher temperature and higher density gas regime towards a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. I will discuss these changes to the products under different conditions of the VUV experiments. Finally, I will discuss the detailed post-ionization dynamics, as revealed from the AIMD simulations, of the ionized acetylene clusters that can lead to the formation of benzene cation.

Events Filters: